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ABSTRACT

The National Security Agency (NSA) collects and processes signals intelligence
information for national security purposes. As part of this mission, NSA predicts
message routing over public switched telephone networks (PSTNs). The hierarchical
switching level (or classification) of PSTN switching stations must be determined before
making routing predictions. This thesis develops a fast graph-theoretic algorithm for
accomplishing this classification. An undirected connected graph models a target PSTN;
switching stations are nodes and logical connections between the switching stations are
unit-length arcs. We develop bounds for the minimum number of switching levels and -
implicitly enumerate all possible classifications for each PSTN. The algorithm is
implemented in Java and PSTNs are classified using a personal computer. Solutions are
obtained in under one second for nine real-world PSTNs, and large notional networks of
over 300 nodes and 900 arcs are classified in under one minute. This research improves

existing node classification software.
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EXECUTIVE SUMMARY

The National Security Agency (NSA) conducts research and development to meet
the needs of the United States for signals intelligence and communications security.
Current NSA research includes development of a General Communications Assessment
Tool (GCAT) to model and analyze public switched telephone networks (PSTNs). The
GCAT design allows modeling of many PSTN types, where each type follows a specific
switching protocol to route calls. A PSTN type used widely throughout the world is a
hierarchical PSTN. In order to predict call routing in a hierarchical PSTN, its
hierarchical structure must be determined (the network must be classified). A GCAT
node classifier assigns each switch in the PSTN to a numerical switching level, observing
a set of classification rules. After all switches are assigned to switching levels, GCAT

predicts communications traffic flow through the PSTN and analyzes PSTN performance.

Existing GCAT artificial intelligence software for node classification has limited
ability to classify switches in hierarchical PSTNs. This thesis develops and tests a fast,
robust algorithm, called the Top Down Node Classification Algorithm (TDNCA), to
classify switches in hierarchical PSTNs. An abstraction of a PSTN is a connected
network whose nodes represent switches, and whose arcs represent connections between
switches. Given this abstraction, TDNCA applies graph-theoretic techniques to infer the
hierarchical switching levels of the network. The primary objective is to find a
classification with the fewest number of hierarchical switching levels, because real-world
PSTNs are constructed in this manner. We develop bounds for the minimum number of

levels, and implicitly enumerate all possible classifications for each network.

TDNCA observes several classification rules that reflect the engineering design of
hierarchical PSTNs. In some real-world PSTNS, the actual configuration differs from the
standard hierarchical design. TDNCA has the ability to use soft inferences to more
accurately classify a PSTN. A soft inference is the probability that a switch occupies a
certain hierarchical level, based on engineering characteristics of installed PSTN

switches.
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This thesis explores three different ranking criteria for PSTN classifications. One
ranking criterion assumes no soft inferences exist. The remaining criteria count the
number of soft inferences that are satisfied and apply a quadratic penalty to soft
inferences that are not satisfied. We compare the results from the three ranking criteria

and make recommendations for further research.

TDNCA is implefnented in Java and sample PSTNs are classified using a personal
crmaputer. Solutions are obtained in under one second for actual PSTNs. Large notional
1~ works of over 300 nodes and 900 arcs, developed to test specific aspects of the
algorithm, are classified in under one minute. TDNCA is faster than existing GCAT

software and can be easily re-coded into C or C++ and integrated into GCAT.
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I INTRODUCTION

A. PROBLEM DESCRIPTION

Executive Order 12333 (1981) tasks the National Security Agency (NSA) with
“collection and processing of signals intelligence (SIGINT) information for national

2«

foreign intelligence purposes,” “executing the responsibilities of the Secretary of
Defense as executive agent for the communications security (INFOSEC) of the United
States Government” and conducting “research and development to meet the needs of the

United States for signals intelligence and communications security.”

NSA studies United States and foreign communications infrastructure for
purposeé of exploitation and protection. Current NSA research inciudes development of
a General Communications Assessment Tool (GCAT) to model and analyze public
switched telephone networks (PSTNs). GCAT (Figure 1) has several major functions,
including modeling arbitrary inter-connected and hierarchical PSTN topologies,

predicting communication routes through PSTNs, and analyzing PSTN performance.

) e ™ - ™
input data > Determine logical Classify network
connections nodes
y, \ J
Analyze network ( A
B nalyze n 1l ;
< performance Build route tables
output results \_ V, _ J

Figure 1: Schematic of Generalized Communications Assessment Tool (GCAT)

GCAT develops a network (a set of nodes connected by undirected, unit-length
arcs) representative of a PSTN (a set of switches or exchanges, connected by trunk lines
or links). This thesis uses the term PSTN when referring to an actual telecommunications
switching structure and just the term network when referring to the modeled abstraction.

A GCAT node classifier assigns each switch in the PSTN to a numerical switching level,



observing a set of classification rules. After all switches are assigned to switching levels,
the route builder predicts communications traffic flow through the PSTN and analyzes

PSTN performance.

GCAT design allows modeling of many PSTN types, where each PSTN type
follows a specific switching protocol to route calls through the PSTN. A PSTN type used
widely throughout the world is a hierarchical PSTN. Existing GCAT artificial
intelligence (AlI) software for node classification has limited ability to classify switches in
hierarchical PSTNs. This thesis develops and tests a fast, robust algorithm, Top Down
Node Classification Algorithm(TDNCA), to classify switches in hierarchical PSTNs.

B. PUBLIC SWITCHED TELEPHONE NETWORKS
1. Description and Terminology

PSTNs route telephone calls worldwide. Individual telephones connect to
regional PSTNs through local loops. A regional hierarchical PSTN is sized to serve a
regional area (e.g., Washington, DC). Regional PSTNs tie together with sophisticated,
high capacity switches to form a global PSTN. When regional PSTNs combine,
additional switching levels route traffic between the regional PSTNs. A call from one
telephone to another routes through a local loop to the PSTN, then through the PSTN to
another local loop which connects to the receiving telephone. The connection between
the two telephones is established on demand only. When the call completes, the PSTN

releases that connection and regains that calling capacity.

Figure 2 illustrates a simple hierarchical PSTN with three levels. Each exchange
(or switch) in a regional hierarchical PSTN occupies one of four possible integer
switching levels, also referred to as classes, ranging in value from three to six. The
highest switching level has the lowest class number. A switch with class number three or

four is a large, regional exchange known as a transit exchange or tandem. Transit



exchanges are sophisticated and more costly than switches with less capability, but have

greater ability to route calls over long distances (Ash 1998).

transit exchange

5 e Q 5 end office

6 remote

Figure 2: A simple example of a hierarchical PSTN with three
levels. Letters in the circles are switch names. Numbers outside
the circles are switch classes.

An exchange with class number five is an end office, a smaller and simpler switch
than a transit exchange. Most exchanges in hierarchical PSTNs are end offices. An
exchange with class number six is a remote, the simplest switch in a PSTN. Remotes and

end offices are collectively known as local exchanges.

2. Logical and Physical Connections

Physical links (copper wires, fiber optic cables or microwave links), also known
as trunk lines, connect PSTN switches. Actual communications between switches occur
along logical connections, defined by PSTN communications software. Physical
connections can be very different from logical connections, as illustrated in Figure 3.

The GCAT node classifier uses logical connections.
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Physical connections Logical connections

Figure 3: A simple network illustrating the difference between physical and logical
connections. Communications between nodes occur along logical connections,
which may traverse several physical connections. In the two diagrams, the nodes
are identical, but the arcs representing connections are different.

3. Hierarchical Switching in a PSTN

It is economically infeasible to construct PSTNs with sufficient capacity to
connect all potential users simultaneously. To maximize the number of simultaneous
connections supported, calls in PSTNs are routed on the most direct path available. This
consumes the least switching capacity and increases the probability that a subsequent call
connects. Fixed hierarchical routing (a characteristic of hierarchical PSTNs) is the most
common architecture in use worldwide. This simple strategy was necessary several
decades ago, when most PSTNs were constructed, because reliable and sophisticated
switches were not available. Additionally, fixed hierarchical routing prevents switching
calls back on themselves or using an excessive number of links on a call (Ash 1998).
With fixed hierarchical routing, each switch must know only which switches it can
communicate with directly and a priority order for connections. Each switch has exactly
one parent (or final) switch (an adjacent switch closer to the top level of the hierarchy)
unless the switch is itself at the top level. The parent switch is the last switch with which
a lower level switch attempts to communicate. After exhausting all other switching
possibilities, a switch homes on its parent switch. Figure 4 illustrates fixed hierarchical

routing in a three-level PSTN.



The arrow indicates the direction of homing for switch A.
Switch names are inside the circles. Numbers outside the
circles indicate the class of each switch.

Route 1: The direct route (path A-B). This is the
preferred route between A and B, using a direct link.

Route 2: If no direct link is available between A and B or
if the link is busy, the call routes through switch D (the
parent of B), then to B (path A-D-B).

Route 3: If the connection between A and D is busy or no
direct link exists between A and D, the call routes through
switch C (the parent of A), then to B (path A-C-B).
Switch A has homed on its parent, switch C.

6

Route 4: If the connection between C and B is busy or no
direct link exists between C and B, the call routes through
both of the class five switches (path A-C-D-B).

Route 5: The final route. If route 4 is unavailable, the
call routes through switch E (path A-C-E-D-B). If all
circuits on the final route are full, the call is not
completed.

Figure 4: Fixed hierarchical routing in a three-level PSTN. Two types of links connect
switches. High—usage or direct links (dashed lines) connect switches that have sufficient traffic
to make a direct route economical. Final links are the links between each switch and its parent,
together with the final links between all switches at the top level (solid lines) (Ash 1998).
Hierarchical routing attempts direct routes first, then overflow calls shift toward the final route.

The preferred routes traverse the fewest links.




Basic structures (Figure 5) can be connected to form larger PSTNs. A mesh is a
maximally-connected group of nodes, called a clique in graph theory. Each node in a
mesh can communicate directly with all other nodes, allowing high traffic density.
Meshes provide high reliability and are common in urban areas. A hub and spoke is a
less expensive alternative to a mesh, since the switches use simpler routing. Calls route
directly using links connecting adjacent outer nodes. Calls to more distant nodes route
through the central node. In the star structure, all calls route through the central node.
Stars are common in rural areas, where traffic density is low. Switching is most

complicated in a mesh and least complicated in a star.

Mesh Hub and Spoke Star

Figure 5: Typical PSTN structures. Meshes (maximally connected) are most
versatile and expensive; stars (minimally connected) are simplest and least
expensive. After Olson (1998)

Figure 6 illustrates a hierarchical PSTN containing each of the structures shown in

Figure 5.



Figure 6: Schematic diagram of a typical hierarchical PSTN with four switching
levels. Nodes A and D are the most sophisticated and highest capacity switches.
From Olson (1998)

C. THE CLASSIFICATION PROBLEM

The class of each switch in the target PSTN is unknown. The classification
problem is to “reverse engineer” the target PSTN and determine the actual switch classes.
Classification rules (constraints) must be satisfied and classification objectives must be

achieved.

1. Terininology

An abstraction of a PSTN is a connected network G(N, A) consisting of the set of

nodes N and a set of unit-length, undirected arcs A. This thesis uses the additional terms:

1) level or class number: the number assigned to a node (integer from 3 to 6);
2) top level: the lowest class number assigned to a node;
3) top-level node: a node assigned to the top level (the highest switching level in

the network);




4) clique: asubset of nodes N, ¢ N is said to be a clique if every pair of nodes in
N, is connected by an arc (Ahuja ez al. 1993). A clique forms a complete
graph. The mesh structure of Figure 5 is an example of a clique; and

5) solution: an assignment of class numbers to all network nodes.

2. Classification Rules

Three hierarchical classification rules or constraints must always be satisfied:

1) top-level nodes form a clique;

2) nodes that are not top-level nodes have one parent; and

3) daughter nodes are immediate descendants of parents (each daughter is exactly

one class number higher than its parent).

3. Classification Objectives

A single primary objective must always be achieved:
1) find a solution with the fewest number of levels that satisfies the classification

rules.

Secondary objectives rhust be achieved as specified:

1) if soft inferences exist (see next section), they should be observed whenever
possible, or

2) in the absence of soft inferences, the solution has a desired ratio of top-level

nodes to nodes not at the top level.

Figure 7 shows an example of a simple hierarchical PSTN with a correct

classification and an incorrect classification.



(&) (®) () © é O o

Q 9 @ 0 e O Class 6

Correct classification

Incorrect classification

Figure 7: Examples of PSTN classifications. Arcs indicate logical connections. The
correct classification follows hierarchical rules. In the incorrect classification, top-level
nodes (class 4) are not a clique, since there is no arc from node C to node F.

4. Soft Inferences

Soft inferences are estimates that a PSTN switch is of a particular class, based on
the engineering characteristics of the installed equipment. These engineering
characteristics may be unknown, but if known, this information should be used to help
classify the network. In the existing GCAT, soft inferences derive from a set of expert
knowledge rules, based on equipment characteristics. In the list that follows, the rules at

the top of the list are better indicators of switching level than later rules.

1) Common Language Location Identification (CLLI) rule: if the CLLI code of a
switch ends in "T", this indicates a large switching capacity, normally associated with a

transit exchange.

2) NPACOC rule: if the NPACOC code of a switch (which indicates the number
of subscriber loops connected to the switch) is “0”, the switch probably accomplishes

trunk routing and is probably a transit exchange.

3) Operating Company Name (OCN) rule: if the OCN of a switch is known and is
not the most common OCN of the network, the switch is most likely to be a local
exchange. When multiple companies cooperatively build a PSTN or combine existing

PSTNs the dominant company tends to control the transit exchanges.



4) Equipment rules: certain equipment types are more likely to be associated with
certain classes of switch. Equipment types "4ESS," "DMS250," or "DMS100" are
generally associated with transit exchanges. Equipment type "DCO" is generally

associated with local exchanges.

5. Mathematical Formulation of the Classification Problem

A mathematical formulation of the classification problem appears below. This

formulation is provided only to describe the problem.

Indices

ij node (1,2, 3, ...,N).
Data

LINK set of undirected arcs (i, j) in the network.
Variables

cl, class assigned to node i;

zclass minimum class assigned to any node;

top, 1 if node i is at the top level, O otherwise; and

D 1 if node j is the parent of node i, 0 otherwise.
Formulation

There are two objectives, the former more important than the latter:

maximize zclass (1)

maximize f(cl,, cl,, ... , cl,) (2)
subject to:

zclass < cl, Vi (3)

top, +top; <1 V(,j)e LINK 4)

10



top,+ D.p;; =1 Vi (5)

JWi, j)eLINK .
cl, ~cl,-4-p,; 23 Y(i, j) e LINK . 6)
pi;+p; <1 V(i, j) € LINK 7
cl. —zclass + top, 21 Vi ®)
cl, — zclass +3-top, <3 Vi ©))
p.; 0.1} V(i, j) e LINK (10)
top, €{0,1} Vi (11)
cl,e{3,4,56} Vi (12)

The objective function (1) maximizes the class number of the top-level nodes,
which is the same as minimizing the number of levels in the network (the primary
objective). Objective function (2), an arbitrary function of the class assigned to each
node, achieves the secondary objectives. Together, these objective functions achieve

both classification objectives.

The constraints (3) determine the minimum class number used. This is a

linearization of zclass = mlIP {cl.}. Constraints (4) specify that two nodes cannot both be
e

top-level nodes if they are not directly connected by an arc. Constraints (5) require every
node not at the top level to have exactly one parent node. Constraints (6) specify that if
node j is the parent of node i, then node i must have a class number at least one higher
than node j. Constraints (7) prevent two nodes from being parents of each other.
Constraints (8) and (9) specify that if a node is not at the top level, its class number must
be at least one more than the minimum class number and a node at the top level must
have its class number equal to the minimum class number. Constraints (10) and (11) are

binary restrictions, constraints (12) restrict variable ¢! to be integer.

11



D. OBJECTIVE OF CURRENT RESEARCH

The existing GCAT node classifier applies Al in the form of expert knowledge
rules to determine the classification of network nodes. The rules are programmed in the
C-Language Integrated Production System (CLIPS), an expert system language
developed at NASA's Johnson Space Center to apply computer speed to rule-based
decision making (Giarratano and Riley 1993). The Al approach to node classification has
several drawbacks. It is slow to converge to a solution and is not analytically accessible
(it is essentially a “black box™) (Curet 1997).

The objective of this research is to develop a fast node classifier for regional
hierarchical PSTNs. Inputs to the node classifier are the logical connections between
network nodes as undirected, unit-length arcs, and soft inferences (if they exist). The
node classifier outputs a list of nodes with assigned class numbers. This thesis develops

TDNCA using graph-theoretic techniques and implements it in Java.

12



II. RELATED RESEARCH

Operations Research methods have contributed directly to the design and
expansion of telephone networks, however nothing in the published literature directly
applies to the node classification problem. This specialized problem has been researched
solely by NSA.

To improve GCAT node classification speed and acéuracy, Curet et al. (1998)
developed a mixed integer linear program (MIP) at the NSA Center for Operations
Research. Olson (1998) continued development of this MIP as a thesis at Naval
Postgraduate School using the General Algebraic Modeling System (GAMS 1997) to
generate the model and Optimization Subroutine Library (IBM 1998) to solve it.

Olson modified the formulation shown on page 10 in several ways. He uses a

single objective function of the form

maximize:
ZWT - zclass—TWT - top, + PWT - > bcls, + > > SOFT,, -(bcl,;) (obj)

changes the variable ¢/, to a binary variable,

bcl . a binary variable which is 1 if node i’s class is ¢, and is 0 otherwise

cr

and adds the following parameters as weights for the objective function,

ZwWT objective coefficient weight for minimum node class used;
W1 objective coefficient weight for each top node;
PWT objective coefficient weight for nodes that are not the smallest

possible class given a choice of two classes; and
SOFT soft inference parameter; an objective function weight applied to

influence the class ¢ assigned to node i in the final solution.

13




Objective function (obj) restates lexicographic objectives (1) and (2) as a single
weighted expression. The primary objective minimizes the number of levels in the
classified network. This is accomplished in (obj) by the constant, ZWT (typically 100),
multiplied by the lowest class number in the network, zclass. The secondary
classification objective shapes the network solution, accomplished in (obj) by the
remaining terms. A constant, TWT (typically about 0.5), multiplied by the number of top-
level nodes, minimizes the number of nodes at the top level. A constant, PWT (typically
about 0.1), encourages most nodes to be at level five. The final term allows soft

inferences to contribute to the shape of the solution.

The values of the objective function weights determine the relative importance of
the competing classification objectives. ZWT is usually much larger than either 7TWT or
PWT, making the primary classification objective the most important. Given a set of top-

level nodes, the ratio TWT/PWT controls the shape of the rest of the network.

In the mathematical formulation shown on page 10, constraints (4), ensuring that
top-level nodes are a clique, are “weak” constraints. These constraints do not directly
check that the top-level nodes are a clique, but rather ensure that among all pairs of nodes
that are not linked, at most one of the nodes in the set is at the top level. This appears to
cause several of the binary and integer variables to take on fractional values in the linear
programming relaxation. Olson found that analysis of the network topology identifies
additional constraints that tighten the formulation of the MIP and improve solution time.

TDNCA uses similar but more extensive graph-theoretic techniques.

14



III. TOP-DOWN NODE CLASSIFICATION ALGORITHM

A. TERMINOLOGY

An abstraction of a PSTN is a connected network G(N, A) consisting of the set of

nodes N and a set of unit-length, undirected arcs A. This thesis uses the additional terms:

(1) SP, = the shortest path distance from node i to node j; V i, j € N;

(2) mSP, = m%x{SP,.j }, the maximum shortest path distance from node i to any
je

other node in the network;

(3) maxSP = maqux{mSP,. } , the maximum shortest path distance between any two

nodes in the network;

(4) minSP = r_n}qn{mSP,. }, mSP, is the maximum shortest path distance from node i

to any other node. minSP is the minimum of these maxima and, shown below

maxSP"

b4

in Property 4, is equal to |'

(5) feasible solution = a solution that satisfies all classification rules;

(6) acceptable solution = a feasible solution that achieves the primary
classification objective;

(7) solution pool = the set of all acceptable solutions; and

(8) optimal solution = a solution from the solution pool that best achieves the

secondary classification objectives.

B. - INTRODUCTION

TDNCA classifies network nodes using a “top down” approach, finding all
combinations of potential top-level nodes that produce acceptable solutions. Simple
addition determines the solution for each set of potential top-level nodes. TDNCA

selects the solution which most favorably achieves the secondary objectives as the
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optimal solution. To illustrate the principles of TDNCA, refer to the small example

network of Figure 8. Consider two cases of choosing a single top-level node.

In the first case, classify node D as a top-level node, assigned class number four.
Then, assign nodes C, E, F and G class number five, since they are adjacent to node D.

Assign the remaining nodes, separated from node D by two arcs, class number six.

() ()—() re
e E n ° Class 4

e O Class 5

Network representation of PSTN O Class 6

(a) D/@—GD H
GQ \® ga o\@

Case 1: Node D at the top level Case 2: Node G at the top level

Figure 8: Example network showing two possible classifications with a single node at the
top level. Assigning node D to the top level achieves the primary objective.

In the second case, classify node G as a top-level node, assigned class number
three. Assign nodes D and H, adjacent to node G, class number four. Assign nodes C, E,
and F, separated by two arcs from node G, class number five. Assign the remaining
nodes, separated by three arcs from node G, class number six. Note that node G must be
assigned class number three if it is the only top-level node so that all node class numbers

are six or lower.

Of these two cases, selection of node D as a single top-level node is preferable,

since this achieves the primary classification objective: a solution with the minimum
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number of levels (three). If node G is selected as the single top-level node, the solution
has four levels. Note that a solution follows quvickly by simple addition after identifying
top-level nodes. In this simple example, node D is the only single node that can be at the

top level and result in a solution with three levels.

A physical analogy illustrates the idea of TDNCA. Visualize the network as
marbles (nodes) connected by unit-length string segments (arcs). Lay the entire network
on a floor, in two dimensions. Select a set of top-level marbles that form a clique. Tape
them together as a single top-level marble. Pick up the top-level marbles and raise them
until all marbles are off the floor. Then lower the top-level marbles until a marble
touches the floor. Assign the marbles on the. floor a class number of six. Assign the
marbles on each successive higher level one class number lower than the level below.

When the top-level marbles are assigned a class number, classification is complete.

As an example, select node (marble) D in Figure 8 as the single top-level marble.
Raise marble D two levels (to level four). Marbles C, E, F and G occupy level five and
marbles A, B and H remain on the floor (level six). Return all marbles to the floor and
select marble G as the top-level marble. Marble G must be raised three levels (to level

three) to classify the network. These are the results tabulated in Figure 8.

Still considering the network of Figure 8, the minimum number of levels for any
feasible solution is three. It is possible to have more than one top-level node as long as
all top-level nodes form a clique, but this does not produce a feasible solution with two
levels. Selecting node C along with node D raises nodes A and B to level five, but node
H remains at level six. Selecting node G along with node D raises node H to level five,

but nodes A and B remain at level six.

TDNCA finds all sets of top-level nodes that result in acceptable solutions. In
the simple example above, the choice is obvious. For a large PSTN, the solution may not
be as obvious. TDNCA uses implicit enumeration; it limits potential top-level nodes to

the subset of nodes capable of being at the top level of an acceptable solution and then
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finds all cliques in the set of potential top-level nodes. The following section establishes

the mathematical basis for finding potential top-level nodes.

C. MATHEMATICAL BASIS

Six properties form the mathematical basis for TDNCA. Properties 1 and 2 bound
the number of levels in an acceptable solution. Property 3 shows that multiple top-level
nodes will not decrease maxSP by more than one. Property 4 establishes the relationship
between minSP and maxSP. Properties 5 and 6 establish achievable lower limits for the

number of levels in a feasible solution.

1. Upper Limit on Number of Levels

Property 1: It is always possible to classify a network with minSP + 1 levels.

Proof: Let k = arg min{mSP,}. Then cl, =6 —minSP and cl,= ¢l + SP_, Vi e N

ieN

is a feasible solution with minSP + 1 levels.

2. Lower Limit on Number of Levels

Property 2: It is not possible to classify a network with less than minSP levels.

Proof: Let TP be any set of top-level nodes in a feasible solution and let

L =max{min{SF,}}. Thencl,=6-L, Vk € TP and cl, =6—L+£ng1{Sﬂi},VieN\TP

jeN  ieTP
is a feasible solution with L + 1 levels (the fewest number of levels for the set TP). Since
all top-level nodes form a clique and exactly one arc separates any two nodes in a clique,

for any k € TP, SP,, —1< mTigl{SP,j },VjeN. Therefore,
max{SF,}—1< max{min{SF,;}} = L. Since minSP —1< max{SF;}-1< L, minSP <
jeN jeN  ieTP jeN

L+1.
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3. Multiple Top-Level Nodes Decrease the Number of Levels by at Most
One

Let TP be a set of top-level nodes in a feasible solution and .let G'=(N',A")be a
revised network formed by combining all nodes in TP into a single node. Thus, N' =

N\TP U {INI +1} and A’ = {(i, )eA | i, j TP} U {(INI +1, j) | GG, j)€A, icTP, jeN\TP}.

Property 3: SP, of G' (SP;”) is greater than or equal to SP, of G (SP; ) minus 1

(SPif" 2 SR.J.G —~1) for (i, j)eA’.

Proof: All nodes in TP must form a clique. Therefore, SI—}].G can be at most one

greater than SP’C .

)

4. Relationship Between minSP and maxSP

Property 4: minSP = [maxSP—I .

Proof: maxSP must be even or odd. For the case of maxSP odd, there exists a

maxSP

node k such that SP, + 1 =SP, = }V -l , where SP, = maxSP. Assume SP, # minSP.

This implies that either minSP < SP,. or minSP > SP,,. If minSP < SP,_, then there exists
anode j’# k such that SP,;-< SP;Vi’e N. This implies that SP,-+ SP; < SP, + SP, ,
since SP;; <SP, and SP-< SP,=SP, + 1 (SP,- < SP,). This is a contradiction that SP, =
SP, + SP, is a shortest path.

If minSP > SP, , then there exists anode j” € N such that SP-> SP,, implying

either SP,-= SP, + SP,-> maxSP or SP, = SP, + SP,-> maxSP, a contradiction that SP,

= maxSP.
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maxSP

For the case of maxSP even, there exists a node k such that SP, = SP, =

where SP; = maxSP and SP,;= minSP. The proof is identical to the odd case.

5. A Feasible Solution May Exist at the Lower Limit

Property 5: If maxSP is even, no feasible solution exists with minSP levels.

L ]

Proof: From the definitions of minSP and maxSP there exists a node k such that

maxSP

SP,=SP, = , where maxSP = SP,. By Property 4, SP, = minSP. By
contradiction, assume we can form a solution with minSP levels. This implies that
. SP,
min{SP; } < minSP —1and min{SP,} < minSP —1. Since minSP -1=—=L-1,

j'€TP jeTP 2

q1iT1l}{SI’,j, }+ q1iT1}}{Sij,} <SP, -2, contradicting Property 3 since this implies
Je Je

SPY <SP -2.

Property 6: If maxSP is odd, the minimum number of levels in any feasible

solution is either minSP or minSP + 1.

Proof: Consider two example networks, each with maxSP odd. In the first
example (Figure 9), the network can be classified with two levels by assigning class
number five to nodes 2 and 3 and class number six to nodes 1 and 4. The minimum

number of levels is equal to minSP.

O—E0—E—

Figure 9: Example network with maxSP = 3, minSP = 2.

In the second example (Figure 10), the network cannot be classified with minSP

levels. Table 1 enumerates all possible feasible solutions for this network. Note that
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there are no cliques of three nodes in this network. The minimum number of levels is

three, or minSP + 1.

All-pairs matrix

node 1 2 3 4 5 6

1 o 1 2 2 3 3

2 {1 0o 1 1 2 2

3 |2 1 0 2 1 2

4 |2 1 2 o 2 1

@_@ 5 |3 2 1 2 o0 1
6 |3 2 2 1 1 0

Figure 10: Example network with maxSP = 3, minSP = 2. The all-pairs shortest
path matrix for this network appears to the right.

Classification with top-level nodes

node | 1 2|3 4 5 6 11,212,312,4]3,5{4,6|5,6
1 3 5 6 6 6 6 4 5 5 6 6 6
2 414 5 5 5 5 4 | 4 4 5 5 5
3 5 5 4 6 4 5 5 4 5 4 6 4
4 5 5 6 4 5 4 5 5 4 6 4 4
5 6 6 5 6 3 4 6 5 6 4 5 3
6 6 6 6 5 4 3 6 6 5 5 4 3

levels | 4 | 3 3 3| 4 4 3| 3 3 3 3 4

Table 1: All possible feasible solutions for the example network of Figure 10.
Each column is a feasible solution. Column headings indicate the top-level
nodes in each solution. The numbers in each column indicate the class
number of the node in that row. The bottom row shows the number of levels
in each solution.

6. Surﬁmary

If maxSP is even, we restrict our search to find feasible solutions with minSP +1

levels, since we know at least one feasible solution with minSP +1 levels exists.
If maxSP is odd, we initially restrict our search to find feasible solutions with

minSP levels; one may exist. If no solutions are found with minSP levels, we look for

feasible solutions with minSP + 1 levels and are guaranteed to find at least one.
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IV. ALGORITHM DESCRIPTION

TDNCA finds all cliques of top-level nodes that produce acceptable solutions
(feasible solutions with the minimum number of levels), then finds the acceptable
solution that best achieves the secondary classification objectives. TDNCA has five
major steps. The first step calculates the all-pairs shortest path matrix and determines the
minimum number of levels in a feasible solution. Step two finds all nodes that can be at
the top level in an acceptable solution. Step three finds each clique of top-level nodes
that results in an acceptable solution. Step four classifies the network for each clique of
top-level nodes found in step three, and step five finds the solution from this group that

best satisfies the secondary classification objectives.

A. FIND SHORTEST PATHS

TDNCA finds the shortest path from each node to every other node (SP,) using a
repeated all-pairs shortest path algorithm. Since all arcs are of unit length, breadth first
search (BFS) solves the shortest path problem for each node in the network. All

subsequent calculations use the all-pairs solution.

Below is the pseudo code for the repeated all-pairs algorithm, which has
complexity O(N-S(BFS)), where S(BFS) is the time required to solve BFS. The
complexity of BFS is O(A); the resulting complexity of all-pairs is O(N-A) (Ahuja et al.
1993, pp. 79, 145).
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algorithm 1: all-pairs shortest path
Input: undirected connected network G = (N, A), all arcs of unit length;
Output: N x N matrix of the shortest path distances, SPg, V(s, ) e N

{

for each node s € N {
SPS; =0 Vie N,
SP;s = 0;
put node s onto FIFO Queue;
while (Queue not empty) {
pop node i from Queue;
for (each arc (i, j) € A(J),
where A()) is the set of arcs incident to node i) {
if (SP;;= ) {
Sst= SPS,'+ 1;
push node jonto Queue;

}

}
store SP; Vie N;

B. IDENTIFY POTENTIAL TOP-LEVEL NODES

TDNCA identifies a set P < N of potential top-level nodes, containing only those
nodes that can be at the top level of an acceptable solution. Due to the clique constraint
for top-level nodes, adding additional nodes to the set of top-level nodes reduces the
distance from any node to the nearest top-level node by at most one (Property 3). Thus,
the set of potential top-level nodes P = {ieN | mSP,= minSP} for a solution with minSP
levels and P = {ieN | minSP < mSP,< minSP + 1} for a solution with minSP + 1 levels.
There are 2°-1 possible combinations of top-level nodes. Typically, IPl is much smaller

than INL
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C. ENUMERATE CLIQUES OF TOP-LEVEL NODES

Define set C as the set of all combinations of nodes in P. Each element C, € C,
i=1,2,...,IClis a unique corhbination of nodes. Define set C’ g.C as the set of all
cliques in C. EachelementC’, € C',i=1,2, ..., IC'lis a unique clique formed from the
nodes in set P. If all nodes in P form a clique, C’' = C, otherwise C’ = C. TDNCA does
not necessarily enumerate the set C; it implicitly enumerates all possible combinations of
the nodes in P, finding the set of cliques C' and retaining only those cliques in C’ that

result in acceptable solutions.

Below is the pseudo code for the enumeration of top-level node cliques. Define
ML as one less than the minimum achievable number of levels in a feasible solution. If
maxSP is even (Property 5) set ML = minSP (a solution with minSP + 1 levels). If maxSP
is odd (Property 6) initially set ML = minSP — 1 (a solution with minSP levels). Since we
are not guaranteed to find a solution with minSP levels, one is added to ML when

necessary.
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algorithm 2: enumerate cliques of top-level nodes
Input: set of potential top nodes indexed as 1, 2, 3, ..., IPI
the all-pairs shortest path matrix and ML;

Output: the set of all feasible solutions with the minimum number of levels
(solution pool)

{
push 1 on LIFO Stack;

while (Stack not empty) {
do {
if (node at top of Stack is connected to each node on Stack) {
if (max{ min {SP, }} = ML) {

jeN  keStack

store the Stack as a set of acceptable top nodes;
}
push (value on top of Stack + 1) on Stack;

}

else {
pop Stack;
if (value popped > IPI) {
pop Stack;
}
push (value popped + 1) on Stack;

}
} until (node at top of Stack > IPl)

pop Stack;
pop Stack;
if (Stack not empty) {
pop Stack;
if (value popped < IPI) {
push (value popped + 1) on Stack;
}
}
}

if no acceptable solution is found, ML = ML + 1 and repeat;

}

Figure 11 illustrates algorithm 2 using a rooted tree constructed from the nodes in
P. TDNCA explores all paths from the tree root and from each sub-root, if needed, to
find all elements of set C. In Figure 11, set C = {(1), (1, 3), (1, 3, 5), (1, 3, 5, 6),
(1,3,5,6,9),(1,3,5,9),(1,3,6),(1,3,6,9), (1,3,9), (1, 5), (1, 5, 6), (1, 5, 6, 9),
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(1,5,9),(1,6),(1,6,9), (1,9, (3), (3, 5), ..., (9)}. Set C contains 2°-1 = 31 elements,
all possible combinations of nodes {1, 3, 5, 6, 9}.

All-pairs matrix

node 1 3 5 6 9
1 0 1 2 1 1
3 1 0 1 1 1
5 2 1 0 1 1
6 1 1 1 0 1
9 1 1 1 1 0

Figure 11: Rooted tree illustrating algorithm 2. In this example, the set P of potential
top-level nodes consists of nodes 1, 3, 5, 6, and 9. The root of the tree is the lowest
numbered node in set P. Construct the second level with the remaining nodes in P, each
connected to the root. Starting from each node in the second level, construct sub-trees
by filling the level below the root of each sub-tree with all nodes in set P numbered higher
than the root of the sub-tree. Continue until all leaf nodes have the highest node number
in set P. The arcs in the rooted tree do not indicate actual connections between nodes in
graph G. The all-pairs shortest path matrix to the right tabulates SP; from the original
graph for each node in set P. Nodes jand jare connected if SP; = 1, otherwise they are
not connected.

Given set C, determining if each element C, forms a clique is straightforward.but
computationally tedious. Algorithm 2 directly determines if each new element C, forms a
clique. If so, it continues. If not, look no farther along that branch of the rooted tree,
since adding more nodes to form additional cliques is fruitless. Algorithm 2 thus finds

the set C’ without explicitly finding each element of set C, significantly reducing

computation in most cases.

Figure 11 shows how to find set C’, sianing af the root of the tree and proceeding
first down the left branch of the tree. Each added node in a path forms a new temporary

set CT. If the nodes in CT are not a clique, discard CT and check no further combinations
containing set CT. If the nodes in CT are a clique, store CT as the next clique C',, i = 1,
2, ..., IC'l. The root node (node 1) is a clique and becomes C’,. The next set of nodes

CT =(1, 3) is also a clique, so C’, = CT = (1, 3). Continuing down the left branch of the
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tree, add node 5 to set CT. Node 5 is connected to node 3, but not to node 1 (SP,, # 1), so
the set of nodes CT = (1, 3, 5) is not a clique. Adding additional nodes to CT to form a
clique is fruitless, so we reverse direction up the tree to the last node in the previous
clique, node 3. Assign to CT the contents of the previous clique. Continue adding nodes
to set CT moving down the adjacent untraversed branch, keeping to the left on that
branch. After adding each node to CT, check if CT is a clique. If so, save CT as the next
clique in the sequence C',i=1,2, ..., IC'l. If not, return to the last node in the previous
clique. After traversing all branches from the root, repeat for each of the sub-trees.
Subsequent cliques in the sequence are C', = (1, 3,6),C',=(1,3,6,9),C",=(1,3,9), C',
=(1,6),C".=(,6,9),C,=(1,9),C,=3),C,;,=@3,5),C",,=(@3,5,6), and so on. Set

C’ contains 23 elements, the number of cliques in set P.

While filling the set C', TDNCA checks that each clique C’, € C' results in an
acceptable solution. An acceptable solution for clique C’, exists if

n}qa%{lz‘licr,l{Sij }}=ML. If not, clique C’, is discarded. To illustrate with Table 2, we
Je i kel

calculate ML = 2. Consider two cliques of top-level nodes, C’, = (G) and C', = (C, D).

mSP, nodei | A B C D E F G H
4 A 0 2 1 2 3 3 3 4
4 B 2 0 1 2. 3 3 3 4
3 C 1 1 0 1 2 2 2 3
2 D 2 2 1 0 1 1 1 2
3 E 3 3 2 1 0 2 2 3
3 F 3 3 2 1 2 0 2 3
3 G 3 3 2 1 2 2 0 1
4 H 4 4 3 2 3 3 1 0

Table 2: Example all-pairs shortest path matrix for the network shown in
Figure 8. For this network, maxSP = 4, minSP =2 and ML = 2.

For clique C’,, observe that max {mi

in{SP, }} = 3 arcs separate node G from the most
JEN\C}  keCy

distant node(s) in the network. We discard the clique C’, as unacceptable since 3 > ML.

For clique C',, jIETrlj\ié{gelgl{Sij }} =2 arcs separate any node {j € N\C’,} from either top-
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level node in clique C',. Since ML =2, we retain clique C’, as acceptable. The solution
with top-level node G has four levels, while the solution with top-level nodes C and D

has only three levels and achieves the primary objective.

D. DEVELOP SOLUTIONS

After algorithm 2, each clique of top-level nodes remaining in set C’ produces an
acceptable solution. For each clique C', in set C’, we classify the network by assigning

each node a class number cl, =6 - ML+ micn{SRk },Vk e N. This satisfies the

remaining classification rules, with each node classified exactly one level below its

parent. The resulting solutions form the solution pool.

E. FIND AN OPTIMUM SOLUTION

All solutions in the solution pool satisfy the primary classification objective:
classification with the fewest number of levels. TDNCA finds the solution in the solution
pool that best achieves the secondary classification objectives. This thesis explores three
methods for determining the “best” solution. Two methods fit the soft inferences; one
uses a non-linear penalty function and the other counts the number of satisfied soft
inferences. In the absence of soft inferences, the third method maximizes a linear

objective function similar to that used by Olson.

1. Penalty function

Calculate a non-linear penalty for each node, a function of the node class and the

class suggested by the soft inferences. Expert'knowledge rules determine a soft inference
for each node, expressed as the probability that the node is a transit exchange, 0 < SOFT,

-~ Y if cl. <
(1- SOFT)* if cl. 4}, VieN.

<1, Vi € N. The penalty for each node is PEN,; = ) )
SOFT, ifcl, 25
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N
The total penalty for each pool solution is ZPEN ; - An optimal solution by this method

i=]

has the smallest total penalty.

2. Count of Soft Inference Matches

Total the matches between node class and the class suggested by soft inferences.
For purposes of this method, node i is considered to be a transit exchange if SOFT, > 0.5
and a local exchange if SOFT, < 0.5. If SOFT, = 0.5, any classification for the node
matches the soft inference, so we ignore this case. The total number of matches for a
N {LSOFT,. +0.5]  ifcl <4

solution becomes i
1-|SOFT, +0.5] ifcl >5

}. An optimal solution by this

i=1

method has the greatest number of matches.

3. Linear Objective function

In the absence of soft inferences, TDNCA maximizes the objective function

ZWT - zclass — TW1 -2top,. + PWT - ZI,WichWT= 1,000, TWT = 5 and PWT =2.

ilel, =5
Olson (1998) uses similar weights. This objective function is Olson’s without his soft

inference term.
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V. COMPUTATIONAL RESULTS

A. HARDWARE AND SOFTWARE

TDNCA is implemented in Java (Sun Microsystems 1998). Reported results are
obtained on a 333 megahertz Pentium II personal computer (PC), operating Windows NT
4.0 and the Microsoft Virtual Machine, a just-in-time Java compiler provided with Code
Warrior 3.0 (Metroworks 1998).

B. TEST NETWORKS

TDNCA classifies 23 test networks, the same networks used by Olson '(1998).
Test networks include nine actual or modified U.S. regional PSTNs, seven notional
networks constructed to test model robustness, and seven networks modified from U.S.

regional PSTNs. Table 3 summarizes all test networks.

1. Networks Derived from U.S. Regional PSTNs

Nine test networks derive from U.S. regional PSTNs obtained from open sources.
These networks typify regional PSTNs. Net-0 models an actual regional PSTN modified
to have a leafy structure (a structure with few meshes or hubs) and four classes.
Network-1 and Network-2 are variations of an actual network with a single central transit
exchange. Network-3 and Network-4 are also variations of an actual network with
multiple transit exchanges. Network-4 has an additional mesh attached to a transit
exchange. Network-5 and Network-6 are the most complex in this group, with multiple
transit exchanges and meshes. Balt and Tracy are actual regional networks. Soft
inferences, based on available technical specifications, exist for all networks in this group

except Net-0. Appendix A contains diagrams of the nine networks in this group.
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2. Notional Networks

Olson (1998) constructs seven notional networks that are more difficult to
classify. Each notional network combines several of the networks derived from U.S.
regional PSTNG, tied together with additional arcs as needed. Notional networks are

intended to represent real-world PSTNs, but on a larger scale.

3. Modified Networks

All but one of the test networks described above has three switching levels. To
test classification of PSTNs with more than three switching levels, Olson constructs
seven additional modified networks, each identified by the name “Lop”, followed by the
number of the original test network, then by a letter. The letter “a” indicates addition of
one node to increase maxSP by one; the letter “b” indicates addition of two nodes

increase maxSP by two.
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Net-0 Notional 21 21 1 3 6 4
Network-1 Baltimore area 27 32 1 21 4 3
Network-2 Baltimore area 38 47 1 30 4 3
Network-3 Georgia 34 38 2 10 5 3
Network-4 Georgia 34 46 3 12 5 3
Network-5 D.C.and N. VA 34 79 2 17 4 3
Network-6 | D.C.and N. VA 42 96 4 16 5 3
Tracy California 90 90 2 31 5 3
Balt Baltimore area 103 103 3 66 5 3
Large Notional Networks
5_6 Aggregation 76 183 6 21 5 3
4_6 Aggregation 110 247 9 24 5 3
3.6 Aggregation 144 320 12 27 5 3
HugeC Aggregation 118 313 10 25 5 3
HugeB Aggregation 152 402 12 27 5 3
HugeA Aggregation 220 575 18 33 5 3
Huge Aggregation 304 948 24 39 5 3
Networks with modified Longest-Shortest Paths
Lop4a Modified Network-4 35 47 3 12 6 4
Lop4b Modified Network-4 36 48 3 12 7 4
LopSa Modified Network-5 35 81 3 17 5 3
Lop5b Modified Network-5 36 82 2 17 6 4
Lop6 Modified Network-6 41 95 3 16 5 3
Lop6a Modified Network-6 43 97 3 16 6 4
Lop6b Modified Network-6 44 98 3 16 7 4

Table 3: Summary of test networks, adapted from Olson (1998).

C. SOFT INFERENCE VALUES

Combining éxpert knowledge rules to produce soft inferences is not necessarily
straightforward. Each rule provides a separate indicator of the class of a switch. If
several rules independently indicate that a switch is a certain type, the combined
inference is stronger than any individual rule, but perhaps only slightly stronger than the

strongest single rule. An inference may also be incorrect. For example, a soft inference
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may be based on strong indications that a switch is a transit exchange, while in fact the
switch is a local exchange. The existing GCAT Al algorithm provides individual rule
weights (Curet 1997). This thesis uses estimates of combined rule weights to provide
soft inferences, shown in Table 4. Soft inferences have been formulated for purposes of

testing our methods, and do not have any specific technical motivation.

Applicable Expert Knowledge Rules SOFT,
OCN, DCO 0.43
OCN 0.45
OCN, DMS100 0.47
DCO 0.48
DMS100 0.52
CLLI, OCN, DCO 0.55
NPACOC, OCN 0.55
DMS250 0.57
4ESS 0.60
CLLI, OCN 0.60
NPACOC 0.60
CLLI, DMS100 0.67
CLLI 0.75
CLLI, NPACOC, OCN 0.77
CLLI, NPACOC 0.80
CLLI, OCN, DMS250 0.84
CLLI, DMS250 0.89
CLLI, 4ESS 0.95

Table 4: Soft inference values for combinations of expert knowledge
rules. SOFT; = the probability that node /is a transit exchange.

Table 5 summarizes soft inference values for two real-world PSTNs. Exact

values of soft inferences for each test network appear in Appendix B.
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Inference Meaning SOFT, Network Tracy Nodes Network Balt Nodes
weak suggestion the node | <0.5 0,2,6,8,11,28,29, 32, 16, 27, 48, 86, 89, 92
is not a transit exchange 34, 40, 43, 46, 47, 52, 55,

57, 61, 668, 71,72, 79,

88, 89
weak suggestion the node 0.5t00.7 12, 19, 43, 63, 67, 76, 2,7, 14, 23,52, 53,54
is a transit exchange 84, 87
strong suggestion the node | >0.7 20, 58, 80, 81 18, 48, 68, 84, 87, 102
is a transit exchange

Table 5. Soft inferences grouped into categories for two real-world PSTNs.
Nodes with strong inferences are most likely to be classified as top-level nodes
when considering soft inferences. Weak inferences have less influence on
solutions.

D. TEST RESULTS

TDNCA classifies most test networks in less than one second and never needs
more than 67 seconds. For testing purposes, TDNCA calculates three different objective
functions for each network. Table 6 summarizes computational performance for all test

networks.

The slower classification of network Huge results from the large number of
potential top-level nodes. The number of arcs, INI, in network Huge is 304. There are
2°* _ 1 possible combinations of these nodes. However, of these 304 nodes, only [Pl = 24
nodes can be at the top-level of an acceptable solution. All 24 of these nodes form a
clique, so there are ICI = IC'l = 2" — 1 or 16,777,215 cliques of top-level nodes. TDNCA
completely enumerates these cliques to find 20,736 that result in acceptable solutions.

The best solution is chosen from among this group.
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Network Number of | Number of Number of Number of Time To
Nodes Arcs feasible top-level | solutions in Classify
INI 1Al combinations of pool (secs)
nodes Il
Net-0 21 21 7 4 0.3
Network-1 27 32 35 18 0.3
Network-2 38 47 55 28 0.3
Network-3 34 38 3 1 0.3
Network-4 34 46 7 1 0.3
Network-5 34 79 277 139 0.4
Network-6 42 96 19 0.3
Tracy 90 90 0.3
Balt 103 103 0.3
5.6 76 183 63 12 0.3
4.6 110 247 511 12 0.3
3.6 144 320 4095 12 0.3
HugeC 118 313 1023 72 04
HugeB 152 402 4095 144 0.4
HugeA 220 575 262,143 144 1.1
Huge 304 948 16.777,215 20,736 67
Lopda 35 47 37 19 0.3
Lop4b 36 48 7 7 0.3
Lop5a 35 81 263 98 0.9
LopSb 36 82 279 205 0.3
Lop6 4] 95 289 212 04
Lop6a 43 97 282 206 0.4
Lop6b 44 98 19 8 0.3

Table 6: Summary of classification performance for all test networks. Calculation of the
all-pairs shortest path matrix requires less than 0.1 seconds in all cases. Enumeration of
feasible top-level sets requires less than 0.7 seconds for all networks except Huge, which
requires 46 seconds. Time to classify includes input, output and all calculations. The
test machine is a 333 megahertz Pentium i PC.

The solution pool contains all solutions that achieve the primary classification
objective: classification with the minimum number of levels. This thesis ranks solutions
from the solution pool using three different optimality criteria (Table 7). In all cases, at
least one of the optimality criteria identifies the solution for each network that correctly
classifies the network. In a correct classification, each assigned node class matches the
actual class of the node in the modeled PSTN. In all but one case (network Balt), the

linear objective function correctly classifies the network.
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Optimal Sets of Top-Level Nodes -

Network Maximum Minimum Penalty Highest Count of Soft

Objective Function Function Inference Matches
Net-0 13 no soft inferences
Network-1 14 14 314
Network-2 14 14, 31 3, 14
Network-3 9,28 9, 28 9,28
Network-4 7,9,28 7,9,28 -1,9,28
Network-5 21,31 0,31 25,31 21,31 21, 24, 31
Network-6 6,15,19,37 6, 15,19, 37 6, 15,19, 37
Tracy 20, 81 20, 58, 81 20, 58, 81
Balt 68, 84 68, 84, 87 68,84, 87

Table 7: Optimal top-level node sets for test networks derived from actual U.S.
PSTNs. The set of top-level nodes shown in each block best achieves the
indicated objective. Spilit blocks indicate multiple optimal solutions. Sets in boid
numbers exactly match the true configuration of the test network. Sets in italics
fail to classify one actual top-level node, classify an additional top-level node, or
both.

Soft inferences influence the selection of optimal solutions. In the following
paragraphs, we examine the classification results for networks Tracy and Balt and

illustrate the influence of soft inferences.

Classification of netWork Balt using the maximum objective function criterion
identifies two top-level nodes, nodes 68 and 84. The actual Balt network has three top-
level nodes, nodes 68, 84 and 87. For network Balt, ML =2, maxSP = 5, and minSP = 3.
Observe that node 87 has only three adjacent nodes (see diagram in Appendix A),
mSP,, =3 and nodes 68, 84 and 87 form a clique. The objective function minimizes the
number of top-level nodes, resulting in exclusion of node 87 from the top level. Nodes
68, 84 and 87 all have strong inferences that they are transit exchanges (Table 5).
Optimality functions that include soft inferences benefit from placing node 87 at the top
level, since a strong soft inference is satisfied. The soft inferences in the case of network

Balt contribute to a correct solution.

Classification of network Tracy using the maximum objective function criterion

identifies the correct solution, but classifications using soft inferences are incorrect.
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Node 58 in network Tracy is only adjacent to nodes 20 and 81 (see diagram in Appendix
A). The objective function excludes node 58 from the top level to minimize the number
of top-level nodes. The soft inference for node 58 strongly suggests a transit exchange,
so the optimality functions that include soft inferences place node 58 at the top level.

The actual Tracy network has only two top-level nodes.

A single node with few incident arcs and a strong soft inference leads to the
classification errors in networks Balt and Tracy. For all test networks, the solution pool
contains the correct solution and at least one of the optimality criteria identifies the

correct solution.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

TDNCA quickly classifies all test networks, including two networks that model
real-world PSTNs. Solutions are obtained in under one second for nine real-world
PSTNs, and large notional networks of over 300 nodes and 900 arcs are classified in
under one minute. The solution speed of TDNCA is due to custom algorithms written for
the purpose of node classification and implemented in Java. TDNCA outperforms
existing node classification software and appears fast enough to allow classification of

any real-world PSTN in less than one minute.

B. ‘COMPARISON TO PREVIOUS RESEARCH

TDNCA has several advantages over previous efforts:

1) TDNCA is written in Java, using well known graph-theoretic techniques and
simple programming. It does not require the use of commercial software packages and
proprietary algorithms. TDNCA can be used as written in Java or can be easily re-coded
in C or C++ and integrated into GCAT.

2) TDNCA classifies test networks more quickly than previous methods and with
equal accuracy. We obtain the same results as Olson for all test networks when using

Olson’s objective function.

3) TDNCA can evaluate multiple optimal or nearly optimal solutions in the
neighborhood of the optimal solution. Once TDNCA finds the solution pool, solutions
can be rank-ordered using any desired fitness function. Fitness functions need not be

linear.

The advantage of the MIP used by Olson (1998) is a flexible formulation. Olson

does not attempt to classify a network with a minimum number of levels, but evaluates
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solutions solely based on a numerical objective. Typical MIP objective function weights
result in classification with a minimum number of levels, but varying the weights can

produce solutions with more than the minimum achievable number of levels.

C. RECOMMENDATIONS FOR FURTHER RESEARCH

TDNCA strictly achieves the primary objective, classification of networks with
the minimum number of levels. If the MIP’s flexibility to classify solutions with more

than the minimum number of levels is desired, TDNCA can be modified to do so.

Further research is required to numerically define the “best” classification
criterion. This thesis explores three methods, but no single method correctly classifies all
test networks. Use of expert knowledge rules to determine soft inferences has promise,
but soft inferences may lead to incorrect classification. Consistently classifying PSTNs

with no errors may require a more sophisticated application of soft inferences.

Soft inferences used in this thesis indicate the probability that a node is a transit
exchange (class three or class four). TDNCA can easily be modified to use more detailed
soft inferences. For example, a node might have a probability of 0.2 of being class four
or higher, a probability of 0.7 of being class five and probability of 0.1 of being class six.
More detailed soft inferences such as these may help to correctly classify real-world
PSTNs .
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APPENDIX A. TEST NETWORKS

This appendix contains diagrams of each of the test networks, from Olson (1998).

[hero
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® [Chsse]
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APPENDIX B. SOFT INFERENCES

This appendix lists the soft inferences generated for each of the test networks.
Net-0 has no soft inferences. P(top) is the probability that a node is a transit exchange. If

p(top) > 0.5, the node is most likely a transit exchange. If p(top) < 0.5, the node is most

likely a local exchange.

Network-1 Soft Inferences Network-2 Soft Inferences Network-3 Soft Inferences
node p(top) node p(top) node p(top)
0 0.48 0 0.48 0 0.52
1 0.48 1 0.48 1 0.48
2 0.43 2 0.43 2 0.43

3 0.45

5 0.57 5 , 0.57 2 05
6 0.48 6 0.48 5 0.45
7 0.48 7 0.48 7 0.52
9 0.48 9 0.48 8 0.43
14 0.89 14 0.89 9 0.84
16 0.48 16 0.48 i‘l) 3-‘;';
17 0.43 17 0.43 T Y%
18 0.43 18 0.43 13 043
19 0.48 19 0.48 14 0.43
20 0.48 20 0.48 15 0.52
22 0.48 22 0.48 16 0.45
26 0.48 26 048 17 0.45
> 055 18 0.45

19 0.47

30 0.43 20 0.43

31 0.55 21 0.43

33 0.57 22 0.45

34 0.57 23 0.45

24 0.43

25 0.45

27 0.43

28 0.89

29 0.45

31 0.45

32 0.57

33 0.45
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Network-4 Soft Inferences

Network-5 Soft Inferences

Network-6 Soft Inferences

node p(top)
0 0.95
9 0.45
13 0.60
15 0.45
25 0.95
31 0.95

node p(top)

0 0.52
1 0.48
3 0.45
4 0.45
5 0.45
7 0.52
8 0.43
9 0.85
10 047
11 0.52
13 043
14 043
15 0.52
19 0.47
20 0.43
21 043
22 0.45
23 0.45
24 0.43
25 0.45
27 043
28 0.89
29 0.45
31 0.45
32 0.57
33 0.45

48

node p(top)

0 0.89
1 0.52
3 0.52
4 0.52
6 0.89
12 0.43
19 0.67
21 0.57
22 0.52
23 0.52
31 0.43
33 0.45
37 0.60
38 0.45
39 0.43
40 0.43
41 0.43




Balt Soft Inferences

node p(top)

2 0.60
7 0.60
14 0.60
16 0.45
18 0.75
23 0.60
27 0.45
48 0.45
49 0.75
52 0.55
53 0.60
54 0.60
68 0.80
84 0.80
86 0.45
87 0.75
89 0.45
92 0.45
102 0.77

Tracy Soft Inferences
node p(top)
0 0.45
2 0.45
6 0.45
8 0.45
11 0.45
12 0.60
19 0.60
20 0.77
28 0.45
29 0.45
32 0.45
34 0.45
40 0.45
43 0.60
46 0.45
47 045
52 0.45
55 0.45
57 0.45
58 0.77
61 0.45
63 0.55
67 0.55
68 0.45
71 0.45
72 0.45
76 0.55
79 0.45
80 0.77
81 0.75
84 0.60
87 0.60
88 0.45
89 0.45
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